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Abstract. The notion of semi-binary operation “+’ on a nonempty

set G with respect to its non-empty subset H were introduced by
te authors of [] . The non-empty set G is called a “semi-binary
H-superset” with respect to the semi-binary operation “x”. In this
paper, we formulate the concept of “weak” and “string” semi-bnary
H-supersets. We further show that the class of S-languages of order
n [] forms a weak semi-binary R-superset and the class of hyper -
languages of order n forms a strong semi-binary R-superset where R
is the class of regular languages.
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1. Introduction

The authors of [5] and [] have introduced the concept of -language
and hyper S-languages of order n resp. The class of S-languages and hyper
B-languages of order n (n > 1) lie between non deterministic and determin-

istic context-free languages and therefore contain all regular languages.

Further, the authors of [] introduced the notion of semi-binary oper-
ation on a non-empty set G woth respect to its non-empty sunset H. In
this paper, we formulate the concept of “weak” and “strong” semi-binary
H-supersets. We further show that the class of S-languages of order n ||

forms a weak semi-binary R-superset and the class of hyper [-languages
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of order n forms a strong semi-binary R-superset where R is the class of

regular languages.

2. Preliminaries
In this section, we begin with some definitions used in this paper:
Definition 2.1 [12].
(i) A finite nonempty set ¥ is called an “alphabet”.
(ii) A “string” is a finite sequence of symbols from the alphabet.

[ 1w
v

(iii) The “concatenation” of two strings “u” and is the string ob-

tained by appending the symbols of “v” to the right end of “u”.

(iv) The “length” of string w denoted by |w| is the number of symbols

in the string.

(v) An “empty string” is a string with no symbol in it. It is denoted

by A and |A\| = 0.

(vi) If ¥ is any alphabet, then “X*”(k > 0) denotes the set of all strings
of length k& with symbols from X.

(vil) The set of all strings over an alphabet ¥ is denoted by ¥*, i.e.

Y =yx0uxtux?u---.

(viii) The set of all non-empty strings from the alphabet ¥ is denoted by

YT and is given by
ShT=2-{\=xtux?ux’u...

(ix) A “language” L over an alphabet ¥ is defined as a subset of X*.
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(x)
(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

A string in a language L is called a “sentence” of L.

The “union”, “intersection” and “difference’ of two languages

are defined in the set theoretic way.

The “complement” of a language L over an alphabet ¥ is defined

as L =Y*— L.

The “concatenation” of two languages L1 and Ls is the set of all
strings obtained by concatenating a string of L; with a string of Lo,
ie.

LiLy = {uv|u € Ly and v € Ly}.
The “star-closure” of a language L is defined as
L*=L"uLl'urL?uU---.
Also, the “positive-closure” of a language L is given by

Lt=r'ur?u---.

A “grammar” G is defined as a quadruple
G= (‘/v Tv Sv P)v

where V' is a finite set of objects called “variables”, T is a finite
set of objects called “terminal symbols” with VNT =¢, S €V
is a special symbol called the “start” symbol, P is a finite set of
“productions” of the form x — y where x € (VUT)" and y €
(VuT)*.

We say that the string w = uaxv “derives” the string z = uyw if the
string z is obtained from w by applying the production z — y to w.

This is written as w = z. If

W1 = Wy = +++ = Wy,
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then we say that w; derives w,, and write w; =* w,.

(xvii)) Let G = (V,T,S, P) be a grammar. Then the “language” L(G)
generated by G is given by

L(G) ={w e T"|S =" w}.

(xviii)) If w € L(G), then the sequence
S=w = w == w, = w.

is a “derivation” of the sentence w. The strings S, wy,wa, -, wy,
which contain variables as well as terminals are called “sentential

forms” of the derivation.

(xix) A grammar G = (V,T,S, P) is said to be “right-linear” (resp.

left-linear) if all productions in G are of the form
A — xB (resp.A — Bz),

or

A—u,

where A, B € V and x € T*. A “regular grammar” is one that is

either right linear or left linear.

Definition 2.2 [6]. A context-free grammar G = (V, T, S, P) is said to be
a “g-grammar of order n” (n > 1) if all productions in P are of the
form A — ax where a € TU{\} and = € V* and any pair (A4, a) occurs

atmost “n” times in P. A f-grammar of order n is denoted by 5(n).

Definition 2.3 [6]. The language generated by a S-grammar of order n is

called a “S-language of order n”.
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3. Closedness of $-languages of order n under
union, concatenation and star-closure op-
erations

In this section, we prove that the class of S-languages of order n is

closed under union, concatenation and star-closure operations.

Theorem 3.1. The family of f-languages of order n(n > 2) is closed under

union.

Proof. Let L; and Ly be two S-languages of order n (n > 2) generated
by the p-grammars Gy = (V1,711,51, P1) and Gy = (Va, T3, 52, P2) resp.
Without any loss of generality, we may assume that V3 NV, = ¢ and
T NTy = ¢.

We construct a new grammar G = (V, T, S, P) where

(i) V=V UV,U{S}; S is a new variable that does not belong to V;
and V5,

(ll) T:Tl UTg,and
(i) P=PLUP,U{S = S1; §— Sy}

Then G is a B-grammar of order n and L(G) is a B-language of order n. It
is clear that

L(G) = L(Gl) U L(Gg) =L ULs.

Thus the family of S-languages of order n (n > 2) is closed under

union. 0

Remark 3.2. Since the order of S-grammar G is at least 2, therefore, the

result of Theorem 3.1 holds true only for n > 2.

Theorem 3.3. The family of B-languages of order n (n > 1) is closed

under concatenation.
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Proof. Let Ly and Ly be two -languages of order n (n > 1) generated
by the g-languages G; = (V4,T1,51, P1) and Gy = (Va, T3, 53, Po) resp.
Without any loss of generality, we may assume that V3 NV, = ¢ and
Ty NTy = ¢.

We construct a new grammar G = (V, T, S, P) where

(i) V=V1UV,U{S}; S is a new variable that does not belong to V;
and V5,

(i) T=T,UTy,
(i) P=P UP,U{S — 55}

Then G is a f-grammar of order n and L(G) is a S-language of order n.

Also,
L(G) = L(G1)L(G2) = L1 Ls. O
Theorem 3.4. The class of 5-languages of order n (n > 2) is closed under

star-closure operation.

Proof. Let L, be a p-language of order n (n > 2) generated by the (-
grammar G1 = (V1;T1751aP1)~

We construct a new grammar G = (V, T, S, P) where
(i) V=V, U{S}; S is a new variable that does not belong to V,
(i) T =T, and
(i) P=PU{S— S1; S — AL

Then G is a f-grammar of order n and L(G) is a B-language of order n.
Also,
L(G) = (L(G1))" = Li.
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Thus the class of -languages of order n (n > 2) is closed under star-

closure operation. O

Remark 3.5. Since the order of S-grammar G is at least 2, therefore, the

result of Theorem 3.4 holds true only for n > 2.

4. Semigroup and monoid structures of (-
languages of order n

In this section, we discuss the semigroup and monoid structures of
B-languages under union and concatenation operations. We begin with the

following definition:
Definition 4.1 [4].

(i) A “semigroup” is a nonempty set G together with a binary oper-

Wy ”

ation “x” on G which is associative i.e.

ax(bxc)=(a*b)xcforallab,ceQ.

(ii) A “monoid” is a semigroup G which contains a (two-sided) identity

element e € G such that

axe=exa=aqaforall a e .

Theorem 4.2. The class of S-languages of order n (n > 2) forms a semi-

group under union.

Proof. The union operation is a binary operation on the class of S-languages
of order n (n > 2). It is clearly associative since Ly U (Ly U L3) =
(L1 U Ly) U Lg for all S-languages L, Lo, L3 of order n(n > 2).

Thus the class of S-languages of order n (n > 2) forms a semigroup

under union. O
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Theorem 4.3. The family of [-languages of order n (n > 1) forms a

semigroup under concatenation.

Proof. The binary concatenation operation on the class of S-languages of
order n (n > 1) is clearly associative since Li(LyL3) = (L1Ls)L3 for all

B-languages Ly, Lo, L3 of order n(n > 1).

Thus the class of S-languages of order n (n > 1) forms a semigroup

under concatenation. O

Theorem 4.4. The class of B-languages of order n (n > 2) together with

the empty language {\} forms a monoid under union.

Proof. Since LU{A} = {A\}UL = L for all 5-languages of order n(n > 2),

therefore, the result holds in view of Theorem 4.2.

Theorem 4.5. The class of -languages of order n (n > 1) together with

empty language {\} forms a monoid under concatenation.

Proof. Since L{\} = {A\}L = L for all g-languages of order n(n > 1),

therefore, the result holds in view of Theorem 4.3. O

5. Conclusion

In this paper, we made a study of closure properties of S-languages
under various operations viz. union, concatenation and star-closure. We
have shown that the class of §-languages of order n forms a semigroup
under union (n > 2) and concatenation (n > 1). We have further shown
that the class of S-languages of order n together with the empty language

{A} forms a monoid under union (n > 2) and concatenation (n > 1).
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